A Rank-k Update Procedure for Reorthogonalizing the Orthogonal Factor from Modified Gram-Schmidt

نویسندگان

  • Luc Giraud
  • Serge Gratton
  • Julien Langou
چکیده

The modified Gram–Schmidt algorithm is a well-known and widely used procedure to orthogonalize the column vectors of a given matrix. When applied to ill-conditioned matrices in floating point arithmetic, the orthogonality among the computed vectors may be lost. In this work, we propose an a posteriori reorthogonalization technique based on a rank-k update of the computed vectors. The level of orthogonality of the set of vectors built gets better when k increases and finally reaches the machine precision level for a large enough k. The rank of the update can be tuned in advance to monitor the orthogonality quality. We illustrate the efficiency of this approach in the framework of the seed-GMRES technique for the solution of an unsymmetric linear system with multiple right-hand sides. In particular, we report experiments on numerical simulations in electromagnetic applications where a rank-one update is sufficient to recover a set of vectors orthogonal to machine precision level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A reorthogonalization procedure for modified Gram–Schmidt algorithm based on a rank-k update

The modified Gram–Schmidt algorithm is a well–known and widely used procedure to orthogonalize the column vectors of a given matrix. When applied to ill–conditioned matrices in floating point arithmetic, the orthogonality among the computed vectors may be lost. In this work, we propose an a posteriori reorthogonalization technique based on a rank–k update of the computed vectors. The level of o...

متن کامل

ON THE CONTINUITY OF PROJECTIONS AND A GENERALIZED GRAM-SCHMIDT PROCESS

Let ? be an open connected subset of the complex plane C and let T be a bounded linear operator on a Hilbert space H. For ? in ? let e the orthogonal projection onto the null-space of T-?I . We discuss the necessary and sufficient conditions for the map ?? to b e continuous on ?. A generalized Gram- Schmidt process is also given.

متن کامل

A Reorthogonalization Procedure for Mgs Applied to a Low Rank Deficient Matrix

We consider the Modified Gram-Schmidt orthogonalization applied to a matrix A ∈ Rm×n. This corresponds to a QR factorization : A = QR. We study this algorithm in finite precision computation when the matrix A has a numerical rank deficiency k. This subject has already been dealt with success by Björck and Paige in 1992 [1]. They give useful bounds in term of norms. We extend their results to pr...

متن کامل

The Loss of Orthogonal i ty in the Gram - Schmidt Orthogonal izat ion Process

K e y w o r d s N u m e r i c a l linear algebra, QR factorization, Gram-Schmidt orthogonalization, Reorthogonalization, Rounding error analysis. 1. I N T R O D U C T I O N Scientific comput ing and ma themat i ca l models in engineering are becoming increasingly dependent upon development and implementa t ion of efficient paral le l a lgor i thms on modern high performance computers . Numerica...

متن کامل

Another Proof for Modified Gram-schmidt with Reorthogonalization

In this note, we consider the modified Gram-Schmidt algorithm with reorthogonalization applied on a numerical nonsingular matrix, we explain why the resulting set of vectors is orthogonal up to the machine precision level. To establish this result, we show that a certain L-criterion is necessarily verified after the second reorthogonalization step, then we prove that this L-criterion implies th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2004